flipkart

Thursday, 29 January 2015

The modern distribution system begins as the primary circuit leaves the sub-station and ends as the secondary service enters the customer's meter socket by way of a service drop. Distribution circuits serve many customers. The voltage used is appropriate for the shorter distance and varies from 2,300 to about 35,000 volts depending on utility standard practice, distance, and load to be served. Distribution circuits are fed from a transformer located in a substation, where the voltage is reduced from the high values used for power transmission.
Conductors for distribution may be carried on overhead pole lines, or in densely populated areas, buried underground. Urban and suburban distribution is done with three-phase systems to serve both residential, commercial, and industrial loads. Distribution in rural areas may be only single-phase if it is not economical to install three-phase power for relatively few and small customers.
Only large consumers are fed directly from distribution voltages; most utility customers are connected to a transformer, which reduces the distribution voltage to the relatively low voltage used by lighting and interior wiring systems. The transformer may be pole-mounted or set on the ground in a protective enclosure. In rural areas a pole-mount transformer may serve only one customer, but in more built-up areas multiple customers may be connected. In very dense city areas, a secondary network may be formed with many transformers feeding into a common bus at the utilization voltage. Each customer has a service drop connection and a meter for billing. (Some very small loads, such as yard lights, may be too small to meter and so are charged only a monthly rate.)
A ground connection to local earth is normally provided for the customer's system as well as for the equipment owned by the utility. The purpose of connecting the customer's system to ground is to limit the voltage that may develop if high voltage conductors fall down onto lower-voltage conductors which are usually mounted lower to the ground, or if a failure occurs within a distribution transformer. If all conductive objects are bonded to the same earth grounding system, the risk of electric shock is minimized. However, multiple connections between the utility ground and customer ground can lead to stray voltage problems; customer piping, swimming pools or other equipment may develop objectionable voltages. These problems may be difficult to resolve since they often originate from places other than the customer's premises.

International differences

In many areas, "delta" three phase service is common. Delta service has no distributed neutral wire and is therefore less expensive. In North America and Latin America, three phase service is often a Y (wye) in which the neutral is grounded at various points. The neutral provides a low-resistance metallic return to the distribution transformer. Wye service is recognizable when a line has four conductors, one of which is lightly insulated. Three-phase wye service is ideal for motors and heavy power usage.
Many areas in the world use single-phase 220 V or 230 V residential and light industrial service. In this system, the high voltage distribution network supplies a few substations per area, and the 230 V power from each substation is directly distributed. A live (hot) wire and neutral are connected to the building from one phase of three phase service. Single-phase distribution is used where motor loads are light.
Europe
In Europe, electricity is normally distributed for industry and domestic use by the three-phase, four wire system. This gives a three-phase voltage of 400 volts wye service and a single-phase voltage of 230 volts. For industrial customers, 3-phase 690 / 400 volt is also available.[citation needed]. Large industrial customers have their own transformers with an input from 10 kV to 220 kV.
Japan
Japan has a large number of small industrial manufacturers, and therefore supplies standard low-voltage three phase-service in many suburbs. Also, Japan normally supplies residential service as two phases of a three phase service, with a neutral. These work well for both lighting and motors. Japan provides 50 Hz or 60 Hz AC power from different power providers.

Rural services

Rural services normally try to minimize the number of poles and wires. Single-wire earth return (SWER) is the least expensive, with one wire. It uses higher voltages (than urban distribution), which in turn permits use of galvanized steel wire. The strong steel wire allows for less expensive wide pole spacing. Other areas use higher voltage split-phase or three phase service at higher cost.

Metering

Electricity meters use different metering equations depending on the form of electrical service. Since the math differs from service to service, the number of conductors and sensors in the meters also vary.

Terms

Besides referring to the physical wiring, the term electrical service also refers in an abstract sense to the provision of electricity to a building.

No comments:

Post a Comment